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Abstract—We introduce here a supervised quantum machine
learning algorithm for multi-class classification on NISQ architec-
tures. A parametric quantum circuit is trained to output a specific
bit string corresponding to the class of the input datapoint.

We train and test it on an IBMq 5-qubit quantum computer
and the algorithm shows good accuracy —compared to a classical
machine learning model— for ternary classification of the Iris
dataset and an extension of the XOR problem.

Furthermore, we evaluate with simulations how the algorithm
fares for a binary and a quaternary classification on resp. a
known binary dataset and a synthetic dataset.

Index Terms—quantum machine learning, variational quan-
tum algorithm, NISQ architecture, classification algorithm, su-
pervised learning

I. INTRODUCTION

Quantum machine learning (QML) has raised great expec-
tations, it is thought [10] [11] to be one of the first possible
applications of quantum computing to be able to run on NISQ1

computers.
Nonetheless, QML is still in its infancy. We can make a

parallel with the dawn of machine learning in the 1950s when
the emblematic perceptron [12], [13] was introduced to solve
binary classification problems. Today’s research in QML has
followed the same path and binary classification has been
broadly studied.

In 1969 [14] it was shown that the perceptron could not
solve the simple XOR problem. In fact it can only classify
linearly separable datasets and it wasn’t before 1986 that
multilayer perceptrons with backpropagation [15] addressed
harder problems. For instance, the ternary classification of
the Iris flower dataset [16], which is non-linearly separable,
could not be solved with the perceptron approach, but is now
a typical test case [17, Ch. 2] of machine learning.

In this paper, we introduce a QML algorithm for multi-class
classification and challenge it with the Iris flower dataset and
a extension of the XOR problem with added Gaussian noise.
The Iris flower dataset has three classes, two of which are not
linearly separable. Binary QML classifications on this dataset
have been addressed, on the linearly separable class against
the rest, by [1], [2] and, pairwise, on all classes by [3].

Any n-ary classifier can be implemented with n binary
classifiers [9] however, to predict all classes at once, we take
a direct approach described in section IV.

There was no guarantee it would be possible to train
our classifier on an actual quantum computer. However our
simulations of the algorithm on the Iris dataset show that the
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quantum computing power needed, for both training and test,
can be found in today’s hardware. And since models trained
on simulators were tested on IBMq by [3] and [2], we were
optimist that the inherent noise of the hardware wouldn’t be an
impediment. Indeed, we run our algorithm —train and test—
on IBMq quantum hardware, for the ternary classification of
the Iris dataset. Results are in section IX.

Similarly, in section X, we successfully trained a model for
the Gaussian XOR problem on the same quantum system.

Other experiments, with a simulator, on binary and qua-
ternary classifications suggest that our approach is flexible
enough to be applied to many problems. The outcome of these
experiments are in sections XI and XII.

As detailed in sections II and III, our algorithm is based on
parametric quantum circuits. Our approach is mostly empirical
and the exact design of these circuits relies on experiments and
on some guidelines presented in sections VI and VII.

II. A VARIATIONAL QUANTUM ALGORITHM

Like many quantum machine learning algorithms [1]–[8],
our procedure for classification of classical data fits in the
general scheme of variational quantum algorithms [18], where
a parametric quantum computation Fθ is applied to an input
vector x to get the result ŷ = Fθ(x).

The variational algorithm per se consists of running Fθ(x)
for different values of θ and x to find an optimal θ⋆ for which
the results are satisfactory.

Although some have envisioned hardware architectures with
quantum random access memory [19] and other interesting
features, our algorithm relies only on the simplest functional-
ities available in actual quantum hardware.

In most of today’s quantum computers or QPUs2, an ele-
mental computation Q take as input n, a number of shots, and
P, a quantum program, or circuit. A circuit P is a sequence of
gates, or elemental operations on qubits.

In what is called a shot, the qubits of the quantum computer
are all initialized at ∣0⟩, the sequence P of gates is applied to
the qubits, then they are all measured. A run or circuit run is a
sequence of n shots. Runs and shots are quantum computations
of different granularity. The result Q (n,P) of a circuit run is
the sequence R̂ of n bit strings in {0,1}N , corresponding to
the measurement of the N qubits of the circuit.

We can note that, the computational time complexity of
Q (n,P) is O(n × ∣P∣) where ∣P∣ is the number of gates in P.
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III. HOW TO INPUT DATA

To input data we resort to a method called variational, or
parametric, encoding which was first proposed in [8]. The
method consists of using a parametric circuit to encode the
input vector x to parameters of the circuit.

A parametric circuit is a circuit where some gates can take
continuous angles as parameters and are 2π-periodic regarding
them.

We define an encoding function f to map each coordinate
or feature, of the input vector x to an angle in the interval
]−π,π[, which gives us a vector of parameters ω = f(x) to
be used in a parametric circuit Pω .

∣0⟩

Pω,θ⋯ ⋯

∣0⟩

Fig. 1. The input vector x is
encoded as angles ω =f(x) of a
parametric circuit Pω,θ

We note X the set of in-
put vectors x from the learning
dataset and define the vectors
X and σX , as its element-
wise mean and standard de-
viation. Similarly, we com-
pute the element-wise standard
score zX(x) = x−X

σX
,

In a Gaussian distribution
approximation, we define the quantile q = Φ−1(1 − ε

1
d /2),

where d is the dimension of X and Φ−1 the quantile function
[20]. By definition, the points x such that ∃i ∣zX(x)∣i > q
represent less than an ε fraction of X . We fix ε small and
ignore such points.

Thus, we define the encoding function as a simple linear
rescale and shift of the input:

f(x) = (1 −
α

2
)
π

q
zX(x).

By definition, all angles of the encoded vector ω = f(x) fall
within the interval ]− (1 − α

2
)π, (1 − α

2
)π[. This enforces an

angular gap απ between the extreme values of the encoded
dataset, where α is a parameter to be choosen.

Using this encoding function f , we can now define our
quantum classifier as

ŷ = Fθ(x) = g ( Q (n,Pω,θ) ) ,

where Pω,θ is a parametric quantum circuit, ω = f(x) are
the encoded input parameters and θ the model parameters,
i.e. those to optimize. The parameter n is the number of
shots, which here is not automatically learned but adjusted
“by hand”; and g is the postprocessing function, a classical
computation —described in following sections.

We can note that as f , the input encoding function, is not
parametric, the dataset is encoded only once, prior to the
learning process.

IV. HOW TO OUTPUT DATA

The output of a basic quantum computation, the run of a
circuit Pω,θ, is a sequence Q (n,Pω,θ) = R̂ of n bit strings in
{0,1}N where N is the number of quantum bits and n the
number of shots.

The outcome of each measurement is a bit string s and from
quantum mechanics we know that it follows an underlying

probability distribution P (s). We can estimate its probability
by P̂ (s) = Ĉ(s)/n, where Ĉ(s) is the number of occurrences
of s in R̂.

Here, recalling that ω encodes for the input vector x, we
use this estimated probability P̂ (s) to predict ŷ the class of
x. In order to do so, we associate to each possible class k a
bit string sk in {0,1}N and we note P̂ (sk) as P̂k.

The output of our algorithm, the predicted class is

ŷ = Fθ(x) = g ( Q (n,Pω,θ) ) = arg max
k

P̂k.

Or, saying it otherwise, the predicted class ŷ is the class k for
which its associated bit string sk has the highest number of
occurrences.

Note that, even though P̂k varies from one run to another,
if the relative difference between the theoretical Pk associated
with each class is high enough, arg maxk will return a
consistent value even with a low number of shots.

This approach is by essence polyadic, the number of classes
being bounded by the total number of possible bit strings. As
[7], it does not rely on multiple binary classifications [9].

V. LEARNING

The learning process for our classifier consists in find-
ing a set of parameters θ⋆ for which the predictor
g ( Q (n,Uf(x),θ⋆) ) has high accuracy.

To do so, for each sample (x, y) of the learning dataset T ,
we define an adequate loss function which correlates with the
error of the predictor:

Lθ(x, y) = − log
eP̂y

∑k∈K eP̂k
,

where P̂y is the probability estimate of the bitstring associated
with the real class y of x.

The optimization process consists of iteratively exploring
the space of parameters θ with an heuristic. At each step i we
compute the loss function Lθi as the average over a random
subset Bi of T :

Lθi = ∑
(x,y)∈Bi⊂T

Lθi(x, y)

∣Bi∣
.

The subset, or minibatch, Bi could be a singleton, the full
training set T or have any cardinality in between.

The result of the training, the vector of parameters θ⋆, is
the θi that gives the lowest value for the loss function.

VI. OPTIMIZING PARAMETRIC QUANTUM CIRCUITS

To specify our circuits we choose an universal set of
quantum gates: six —the π/2 rotation about the Pauli-X axis,
Ziφ —a rotation of an arbitrary angle φ about the Pauli-Z axis,
and Czij —the controlled-Z gate, where i and j are the qubits
to which they apply.

In a QPU, these elemental gates are implemented using
pulses —physical phenomena that modify the state of the
qubits. A controlled-Z gate is translated in a 2-qubit pulse,
a sx gate needs a 1-qubit pulse and Z-rotations need no pulse



[21] as they are implemented by modifying the subsequent
pulses.

Each QPU might have a slightly different set of elemental
gates, by choice of the hardware manufacturer. Nonetheless,
a circuit written using our set of elemental gates have a
translation that preserves the number of 1-qubit pulses and
2-qubit pulses for most of the existing QPUs (see Appendix
A).

A quantum program, or, circuit P specifies [22] a unitary
matrix, that we note here P̆. The unitary P̆ transforms a
quantum state into another one.

Qubits in a given quantum state ψ yield, when measured,
a bit string s with probability P (s) = ∣ ψs ∣

2, where ψs is the
amplitude associated with s. We note M the measurement
operator M ∶ ψ ↦ s. From the definition of M it follows that

∃α∈R U = eiαU ′
Ô⇒ MU =MU ′.

If this holds we say that U and U ′ are equal up to a global
phase and note U ≡ U ′.

The purpose of a quantum computer is to implement the
unitary P̆ and the final measure operation. However, due to
engineering limitations, the hardware is imperfect and the
actual quantum operations differs from those specified in P.
This difference or noise grows with the number of pulses and
the time needed to run the circuit.

∣0⟩ U ● ≡ ∣0⟩ U

∣0⟩ ● ∣0⟩
Fig. 2. A controlled-Z after ini-
tialization has no effect, see (3).

Hence, to minimize the
noise, if two circuits P and P′

specify for equivalent unitaries
P̆ ≡ P̆

′ or yield the same result
MP̆ =MP̆

′ we will choose the
circuit minimizing the number
of pulses.

We can now list some simple properties on the unitaries of
our elemental gates that will help in optimizing our circuits.
Since the unitary

(

AB of the concatenation AB of quantum
programs A and B is the composition of their unitaries ĂB̆
we will omit the .̆ symbol when no confusion is possible.
(1) As ZiφZ

i
λ ≡ Ziφ+λ, in a circuit, two consecutive Z-

rotations on the same qubit can be replaced by just one.
(2) As Ziφ∣0⟩

⊗N
≡ ∣0⟩

⊗N , a Z-rotation immediately after
qubit initialization can removed.

(3) For any 1-qubit unitary U i applied to qubit i, as
CzijU

i∣0⟩
⊗N

≡ U i∣0⟩
⊗N , we can remove a Cz applied to

a qubit j immediately after its initialization. See Fig. 2.
(4) As MZφU = MU , we can remove a Z-rotation applied

to a qubit just before its measurement.
(5) Similarly, as MCzijU = MU , we can remove any

controlled-Z followed by no gate before measurement.
(6) As CzijCz

i
j is equal to the identity, two consecutive

controlled-Z on the same qubits can be removed.
(7) Any unitary U i on one qubit i can be decomposed as

U i ≡ Ziφs
i
xZ

i
αs
i
xZ

i
λ.

(8) Properties (7), (2), (6) and (1) imply that any qubit should
have at most sxZφsx between initialization and its first
Cz gate.

(9) Properties (7), (6) and (1) imply that any qubit should
have at most a sequence sxZφsxZα between two Cz gates

(10) Properties (7), (4) and (1) imply that any qubit should
have at most sxZφsxZα after its last Cz gate and before
measurement.

∣0⟩ sx Zφ0
sx ● Zα1

sx Zφ1
sx ● . . . ● Zαk sx Zφk sx

Fig. 3. Maximum succession of atomic gates on a single quantum bit.

Properties (8), (9) and (10) give a maximal sequence Any
circuit with more gates than that can be optimized further.

VII. DESIGNING CIRCUITS

The constraints for optimality leave a high level of freedom
on how to design parametric circuits: less elemental gates are
still possible; some angles can be fixed as constants; some
parameters will encode input features, while others will be
parameters to optimize, and a choice has to be made on how
to entangle qubits.

Following intuitions and empirical evidences (some circuits
perform better than others) we have identified a set of rules
to design what we think are good parametric circuits for
our algorithm. However as intuitions are often misguided and
empirical evidences can be overthrown by new experiments,
we hope and expect these rules to be challenged and/or
expanded by further research work.

φ ≡ sx Zφ sx

Fig. 4. Compact notation for sxZφsx.

Two main criteria enter
in the design of parametric
circuits intended to be used
as classifiers. First, we want
to minimize the number of
gates. Second, we need enough parametric gates to encode
the input vector and provide adequate learning capacity.

This double constraint –minimize the number of gates and
maximize the number of parametric gates– should have led to
keep all the Z-rotations as parametric gates. Yet, without fully
understanding why, we noticed that a parametric Z-rotation
right after a controlled-Z seem not to add much capacity and
tend to impair the learning phase. Hence, we opt for a rule
enforcing exactly one parametric gate between entanglements,
or more precisely, as shown in Fig. 5, a sequence sxZφsx
between any two consecutive controlled-Z gates.

∣0⟩ φ0 ● φ1 ● . . . ● φk

Fig. 5. Succession of operations on a quantum bit, only one parametric gate
between entanglements.

If we extend this rule for individual qubits to the whole set
of qubits, we have a step where each qubit is rotated by some
angle followed by a step where qubits are entangled by pairs.
Things are slightly, but not fundamentally, different depending
whether the number of qubits is odd or even.

Although we don’t have clear rules on how or why choose a
given entangling pattern at each step, it is well understood [23]



that to unleash the power on quantum computing qubits need
to be highly entangled.

At each step a quantum computer only allows 2-qubit gates
between a limited set of qubit pairs, which is the coupling
map or qubit connectivity graph.

Assuming that the qubit connectivity graph is connected,
by choosing alternating entangling patterns (see Fig. 6) it is
possible in few steps to ensure that all qubits are entangled
pairwise. In designing our circuits, we will choose the suc-
cession of entangling patterns in such a way it minimizes the
number of steps to reach a state where all qubits are entangled.
Similar rules to design circuits are proposed in [24].

∣0⟩ ● ● ● ● ● . . .

∣0⟩ ● ● ● ● ● . . .

∣0⟩ ● ● ● ● ● . . .

∣0⟩ ● ● ● ● ● . . .

∣0⟩ ● ● ● ● ● . . .

∣0⟩ ● ● ● ● ● . . .

Fig. 6. Alternating different entangling patterns on 6 fully connected qubits

Once the structure of the parametric circuit is fixed, the
next decision we face is which parameters are going to be
input parameters ω (see section III) and which are going to
be model parameters θ.

Although the model parameters θ have a similar role and are
indistinguishable, each of the input parameters ω corresponds
to features that have a meaning, so their position in the circuit
matters. This choice is today made experimentally on learning
performance.

Also we implement the idea of data re-uploading, suggested
first by [7] and used in [6], which consists in inputting ω
more than once. Data re-uploading proves to be useful to add
learning capacity without adding more qubits.

VIII. EXPERIMENTAL PROTOCOL

To assess the capabilities of our algorithm, we carry out a
series of experiments on various classification problems: the
Iris flower dataset [16], the XOR problem with Gaussian noise,
the skin segmentation dataset [25] and a four-classes synthetic
dataset, generated using scikit-learn [26].

In each case, we follow the same experimental procedure;
first we randomly split the dataset in a training and a testing
subset, preserving the original ratio of each class. Second, we
use the training dataset to find the parameters θ⋆ that minimize
the loss function Lθ. Finally, we use the test set to evaluate the
prediction capabilities on independent data of Fθ⋆ the trained
model (see [17, Ch. 7]).

In the learning phase, we randomly initialize the parame-
ters θ0 of the circuit and optimize them iteratively as explained
in section V. The loss function takes the full training data set
as minibatch.

We use the optimization package of SciPy [27], with two
different heuristics, namely the algorithms BFGS [28] and
COBYLA [29].

The BFGS algorithm uses the gradient of the loss function
Lθ and moves the parameters accordingly. However, as Lθ
depends on the random variable P̂k, it is random and its exact
gradient is inaccessible. Nonetheless, with a high number of
shots, the variance of P̂k is low and we can resort to a finite
differences estimate.

Moreover, for a small number of qubits, it is possible to
simulate a quantum computer and get the theoretical Pk. We
can then compute the exact loss function using Pk instead of
its estimate.

On the other hand, as COBYLA algorithm is gradient-free,
it can work with a low number of shots. Then, COBYLA is
the preferred method using a real QPU and BFGS when using
exact probabilities from a simulated QPU.

Once our quantum model is trained, we compare its results
on the test set to those obtained using a classical model.
For this purpose, we consider the gradient boosting method
XGBoost [30] —a state of the art model in many applications.

As a last note, we fix the values introduced in section III.
In this paper, we use an angular gap απ of π

10
and fix the

quantile q to 3, so we ignore at most ε = 1% of the points of
every dataset3.

IX. IRIS DATASET ON QPU

∣0⟩ ω0 ● θ0 ● ω2 ● θ2 ● ω0 ● θ4 ● ω2 ● θ6

∣0⟩ ω1 ● θ1 ● ω3 ● θ3 ● ω1 ● θ5 ● ω3 ● θ7

Fig. 7. The quantum circuit for the classification of Iris dataset. Vector ω
encodes for (sepal length, sepal width, petal length, petal width). Note that
the features are re-uploaded.

The Iris flower dataset [16], consists in 50 samples from
each of three species of Iris (Iris setosa, Iris virginica and Iris
versicolor), for a total of 150 data points, which we split in
a train and test set of sizes 90 and 60 respectively. The input
vector of each sample consists of four features, the length and
the width of sepals and petals.

It is a well know test case for ternary classification, and,
thanks to its relatively small sample size, we were able to run
training and test entirely on an actual QPU, the IBMq-valencia
5-qubit quantum computer.

After trying several different circuits on simulated QPU,
we choose to implement the four features in only two qubits.
Fig. 7 shows our best performing circuit. The three classes,
setosa, virginica and versicolor, are read respectively in the
bit strings 00, 01 and 10, where the leftmost bit is the
measurement of the upmost qubit.

Since IBMq-valencia has five qubits, to halve the number
of QPU calls, we parallelize computations by running two

3Iris: ε = 1%; Skin: ε = 0.8%; Artificial: ε = 0.5%.



circuits at once on independent pairs of qubits, and we read
the output accordingly.

At each learning iteration, to compute the loss function, we
run the circuit for all 90 elements of the training set. For the
first 20 iterations the number of shots per run is 250, then we
increase it to 500 and from iteration 50 we raise it again to
750 shots.

0 10 20 30 40 50 60 70 80
iteration

0.7

0.8

0.9

1.0

1.1

1.2

lo
ss

 v
al

ue

simulated QPU
avg simulated QPU
IBMq-valencia

0 15 30 45 60 75 90 105 120

Fig. 8. Evolution of the loss function value during training of the quantum
Iris classifier. The green line represents the training we did on IBMq-valencia
with gradient-free optimizer COBYLA. Blue lines represent different trainings
on simulated QPU using the exact loss function with gradient-based optimizer
BFGS, and red line shows their average. Note that the number of iterations
for the IBMq-valencia training have their own scale (0-120), shown on top.

We performed 120 optimization steps with COBYLA. Fig. 8
shows the evolution of the loss function, and we see that
around iteration 80 it already stopped improving. The experi-
ment took 5400 dual circuit runs, for a total of 3.26 millions
shots, and spent approximately one hour and 20 minutes
running on the QPU, as reported by IBM Quantum Experience
platform.

We assess the resulting trained model over six different
IBMq machines4, with three runs each and 300 shots per run.
Fig. 9 shows the confusion matrices and accuracies on the
60 points of the test set for both the quantum model and the
classical XGBoost model, trained with the same data.

QUANTUM MODEL
TRAINED ON IBMQ-VALENCIA

0 1 2
0 19.73 0.27 0.00
1 0.00 19.93 0.07
2 0.00 2.40 17.60

ACCURACY : 95.44 ± 3.54%

CLASSICAL MODEL

0 1 2
0 20 0 0
1 0 19 1
2 0 2 18

ACCURACY : 95.00%

Fig. 9. Compared test scores between our quantum model trained on IBMq
valencia and XGBoost a state-of-the-art classical model. We test the quantum
model on six different IBMq machines with three runs each and the reported
scores show the averages. In the confusion matrices, each entry Ci,j is the
number of observations actually in class i (row), but predicted to be in
class j (column).

These results on quantum hardware are in line with the
preliminary experiments with exact loss function on simulated

4essex, burlington, vigo, yorktown, london, ourense

QPU. We trained the quantum model a hundred times starting
with different initial parameters and most of the time the
training converges to close minimal values of the loss function
(see Fig. 8). The learning process on IBMq-valencia however
stagnated at higher values. Nonetheless, the best model on
simulated QPU, the one with the lowest training loss value,
did not get a higher accuracy when tested on the six IBMq
machines.

X. GAUSSIAN XOR ON QPU

The XOR problem is a decision problem on binary input
consisting in learning the exclusive-or function. Given an input
in {0,1}2, the XOR function outputs 1 for (0,1), (1,0), and
0 for (1,1), (0,0). Minsky and Papert [14] showed that this
problem is not linearly separable and cannot be learned by a
perceptron [12].

∣0⟩ ω0 ● θ0 ● θ2

∣0⟩ ω1 ● θ1 ● θ3

Fig. 10. Circuit to solve the Gaussian
XOR problem, vector ω is the input.

To make the problem
more interesting and chal-
lenging, we extend the in-
put space to continuous val-
ues and generate a dataset
to train a model. We take
four symmetric points on
the Cartesian axes, and assign label 0 to the points on x-axis
and label 1 to those on y-axis —this is an affine transformation
of the original input points. Then, we use these points as
centers for four 2-dimensional Gaussian distributions, from
each of which we sample 20 datapoints, assigning them the
corresponding label.

Figure 11 shows the scatter plot of this generated dataset,
along with the distribution centers. We refer to this mixture of
Gaussians as the Gaussian XOR problem.

Our quantum classifier uses the two-qubit circuit with four
parameters shown in Fig. 10. The datapoints coordinates are
encoded in ω without preprocessing. We associate label 0 with
bit string 00 and label 1 with bit string 10.

We train the model on IBMq-valencia with these 80 dat-
apoints, proceeding as for the Iris dataset in section IX.
The optimization process converged after 69 steps, using
COBYLA, for a total of 2760 dual circuit runs and 1.37
million shots.

Since we know the generating distribution D of the dataset,
we can compare our solution to the optimal-possible decision
boundary. This, is given by the Bayes classifier [17, Sec. 2.4],
which predicts the class directly from the posteriori distribu-
tion ŷ = arg maxy P (y∣ω), where P (y∣ω) is the conditional
probability of label y given observation ω.

The generalization error of the Bayes classifier for this
distribution is 3.33%, so the best possible accuracy is 96.67%.
Using one million newly generated datapoints we test our
quantum model on a simulated QPU with 300 shots. The
accuracy of this particular model —trained with 80 points
on actual hardware— is 96.31%, not far from the theoretical
maximum.

The decision boundaries of the Bayes classifier are the
two perpendicular bisectors of the centers of the Gaussian



/2 0 /2

/2

0
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0
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Fig. 11. Scatter plot of the training dataset generated from the Gaussian
XOR problem. The points with bold borders are the centers of the Gaussian
distributions. The background shows, color coded, the predicted class w.r.t.
ω, while the grey lines represent the Bayes-optimal decision boundaries.

distributions. Figure 11 shows the decision boundaries of our
quantum model along with the Bayes-optimal ones.

XI. SKIN SEGMENTATION DATASET

The skin dataset consists in a large number of RGB-color
values sampled from face images; each sample is labeled as
skin or non-skin. We use a random subset of size 1000, with
equally represented classes, which we further separate in a test
and train set containing 400 and 600 observations respectively.

∣0⟩ ω0 ● θ0 ● θ2

∣0⟩ ω1 ● θ3 ● θ4

∣0⟩ ω2 ● θ1 ● θ5

Fig. 12. The circuit for skin seg-
mentation quantum model. Vector
ω encodes for (B,G,R).

The dataset is not linearly
separable (see Fig. 13) and we
want to know if our algorithm
could do the binary classifica-
tion with a minimalist circuit.
After several attempts we man-
age to get good results with the
3-qubit circuit in Fig. 12, with
no data re-uploading and only
3 entanglements and 6 parameters. We associate the classes
with the permutation-invariant bit strings 000 and 111. We
train and test the model with the simulated QPU using exact
probabilities. The test set consists of 400 samples, with 200
examples per class. Our simple quantum model on 3-qubit
scored a 94% accuracy, close to the 98% of the classical
XGBoost model.

Skin
Non skin

Fig. 13. Skin segmentation dataset seen from two orthogonal angles.

XII. SYNTHETIC DATASET WITH 4 CLASSES

In previous sections, we treated two real-life datasets, which
are well known examples of binary and ternary classification.
Nonetheless, our algorithm can, in principle, discriminate as
many classes as bit strings the circuit can output. So a 2-
qubit circuit should be able to solve a quaternary classification
problem.

Then, we generate a 4-class bidimensional synthetic dataset
of 5000 samples using the make_classification func-
tion from scikit-learn [26]. We randomly split the dataset in
train and test sets representing respectively 60% and 40% of
the samples, preserving each class ratio.

Out of many 2-qubit circuits, we choose a circuit with
twelve parameters and four data uploadings as defined in
Fig. 14. We assign each of the possible bit strings –00, 01,
10, 11– to a class.

∣0⟩ ω0 ● θ0 ● ω0 ● θ2 ● θ4 ● ω0 ● θ6 ● ω0 ● θ8 ● θ10

∣0⟩ ω1 ● θ1 ● ω1 ● θ3 ● θ5 ● ω1 ● θ7 ● ω1 ● θ9 ● θ11

Fig. 14. The quantum circuit for quaternary classification of the two-
dimensional synthetic dataset.

We train and test this quantum model using exact probabil-
ities on simulated QPU. The average accuracy over a hundred
experiments with different initial parameters is 85±2.8%, close
to the 87.98 ± 0% of the classical XGBoost model.

Fig. 15 shows the prediction for the whole feature space
of one the trained models. We note non trivial decision
boundaries.

XIII. FUTURE WORK AND CONCLUSION

We obtain satisfying quantum models for the challenging
Iris flower dataset and the other polyadic problems, with good
test scores compared with a classical model.

Furthermore, we were able to train the model for the Iris
dataset and the Gaussian XOR problem on actual hardware.
This was possible because of the low number of shots needed
and the noise resilience of the model. Moreover, even though
different machines have different noise patterns, the model
trained on one machine performed well on all others (see
Fig. 9).

It is important to remind that the optimization heuristics
used in this work have severe limitations. The loss function
is quantum computed and thus random; hence, we can only
approximate its gradient to some extent, at the expense of more
shots. Usual gradient based methods as BFGS perform poorly
with this sort of randomness. In fact, we use them successfully
on simulations, but cannot do the same on actual hardware.
For QPUs we resort to the gradient-free COBYLA. However,
it is well known [31] that COBYLA’s performance drastically
degrades with the dimension of the parameter space.

To improve the algorithm, we will need to explore opti-
mization techniques adapted to quantum loss functions. One
salient idea is to use circuit modifications to approximate the
gradient, as proposed by [32] [33].
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Fig. 15. Scatter plot of the synthetic dataset. The background shows, color
coded, the predicted class w.r.t. ω0 and ω1.

Another avenue worth exploring is to work in a different
parameter space. Here, we optimize directly the angles θ
of the parametric quantum circuit; instead, we could train
the model using an intermediate parameter vector ρ mapped
to θ. For instance, a non-linear mapping would reshape the
optimization landscape. Also, this would allow constraints
on θ, in particular parameter sharing, as in convolutional
neural networks [34].

However, when addressing higher dimensional data and
increasing the number of qubits, the most challenging issue
becomes circuit design. We cannot rely anymore on sheer
guess-and-check and need to understand better why some
circuits outperform others.

As the computational capability of quantum hardware keeps
increasing, we expect the empirical study of more complex
quantum machine learning models to give new insights and
lead to increasingly better algorithms.

APPENDIX A
TRANSLATING TO HARDWARE SPECIFIC NATIVE GATES

Quantum hardware manufacturers implement different sets
of native gates to specify the circuits to run on their machines.
In section VI we define our own set of gates to specify circuits:
the 0-pulse Z-rotation and the 1-pulse sx one-qubit gates and
the controlled-Z two-qubit gate.

The one-qubit gates are native in IBM [35], Rigetti [36],
Honeywell [37] and Google [38] quantum architectures and
implemented with the same number of qubits.

The controlled-Z is native for Rigetti’s QPU and for most of
Google’s —with the notable exception of the Sycamore QPU.
The tunable two-qubit gate [39] of the Sycamore processor
has not been studied in this paper.

Honeywell uses the two-qubit Zz gate and Czij translates in
Zi−π/2Z

j
−π/2Zz

i
j which preserves the number of pulses.

IBM uses the controlled-not as two-qubit gate, noted Cij .
Controlled-Z can be translated in HjC

i
jHj , where H is the

Hadamard gate. With the following translations

HsxZφsxH = sxZπ−φsx

HsxZφsx = ZπsxZφ−π2 sx

sxZφsxH = sxZφ−π2 sxZπ

the Hadamard gates disappear, thus preserving the number of
pulses.
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